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Abstract 
 

Dynamic multi-objective optimization problems are challenging and currently not-well understood class of 
optimization problems but it is important since many real-world optimization problems change over time. 
When changes appear in the problem, there is a necessity to adapt to the changes in such a way that the 
convergence rate is sufficiently high. The work is devoted to the analysis of the efficiency of Pareto local 
search algorithms for dynamic multi-objective optimization problems as a method to increase the 
convergence rate. We propose a hybrid of global and local search algorithms, we use NSGA-2 algorithm 
as a global optimizer and L-BFGS-B as a local search algorithm. The IEEE CEC2018 benchmark set is 
used for the experimental comparison of investigated approaches. The experimental results show that the 
proposed hybridization of NSGA-2 and a local search algorithm can efficiently identify the Pareto front in 
the case of not intense changes in the environment.    
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1. Introduction 

Many real-world optimization problems exist in the dynamic environment and there is a necessity 

to take into account changes that continuously occurring in the environment. These problems arise in 

different application areas such as control, engineering and so on.  

Dynamic multi-objective optimization is a complex and currently not-well studied class of hard 

optimization problems. In such problems, objective functions, their parameters and constraints imposed on 

the search space can change over time (Yazdani, 2021). Objective functions are assumed to be presented 

by a "black- box" model; therefore, forms of objective functions and their properties remain unknown and 

are not involved in the optimization process. Also, there is no possibility to evaluate derivatives of objective 

functions and this fact significantly complicates the choice of a suitable method for solving problems of 

this class.  

Approaches for solving dynamic multi-objective problems (DMOOP) based on evolutionary 

algorithms (EA) have been presented in many publications. The local search shows the successful results 

as one of improving mechanisms of EAs for solving static single- and multi-objective optimization 

problems. The same approach can be implemented for improving DMOOP solutions.  

The rest of the paper is organized as follows. Section 2 presents the description of DMOOP. Section 

3 contains experimental setups and some general settings. In Section 4, the experimental results are 

presented. In conclusion, the obtained results are summarized, and some further ideas are suggested. 

2. Problem Statement 

2.1. Dynamic multi-objective optimization problem 

A dynamic multi-objective optimization problem can be defined as follows: 

!𝑓!#𝑥̅, 𝛼((𝑡),, 𝑓"#𝑥̅, 𝛼((𝑡),, … , 𝑓##𝑥̅, 𝛼((𝑡),. → min
$̅
,                                              (1) 

here 𝑓& denotes a set of objective functions, 𝑖 = 1, 𝑘(((((, 𝑘 is the number of objective functions; 𝑥̅ ∈ 𝑆 

is a solution vector from the feasible search region 𝑆; 𝛼((𝑡) is a parameter vector of an objective function 

that changes over the time; 𝑡 ∈ [0, 𝑇] is the time interval, in which the problem is considered.  

In real-world problems, the vector 𝛼((𝑡) can contain parameters of the external environment (such 

as temperature, available resources and so on) that affect the objective function. In the moving peaks 

benchmark problems this can be a parameter of the peaks’ depth, width, and location. The vector 𝛼((𝑡) can 

also include other variable parameters (for example, the number of variables of the objective function) 

(Azzouz et al., 2017). 

DMOOP includes two or more objective functions that must be optimized simultaneously. This 

means that due to changes in the environment, the Pareto-optimal set (PS) and the Pareto-optimal front (PF) 

also change. Therefore, within the searching process it is necessary to provide sufficient diversity to be able 

to efficiently approximate PF of the problem and to fit to appearing changes. This is one of the reasons why 

EA’s with a population of solutions is an efficient tool for solving DMOOP.  
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2.2. Pareto local search 

Local search is used in EAs as a tool, which allows improving the convergence rate of EAs (Sindhya 

et al., 2008). The main feature of local search algorithms is that the solution changes only in some local 

area of the search space. Moreover, local search algorithms have proven the convergence to a local 

optimum.  

However, in the case of a multi-objective problem there is the necessity to take into account values 

of all objective functions. For this purpose, a simple convolution of objective functions or the measure that 

shows the distance between a referent point (usually the worst point) and obtained PS can be used. Thus, 

different approaches that use local search (LS) in multi-objective optimization have been proposed as Pareto 

local search approaches (Chen et al., 2014; Ishibuchi & Murata, 1996; Sindhya et al., 2008). The aim of the 

Pareto LS algorithm is not to find a single final solution but approximate PF of the problem as accurate as 

it is possible.  

A local search procedure is applied to solutions obtained by EA. For example, Sindhya et al. (2008) 

proposed Pareto LS approach, which defined as a minimizing procedure of the following objective function: 

max
&'!,#))))

*!($̅)-.!
*!
"#$-*!

"!%	
+𝜌∑ *&($̅)-.&

*&
"#$-*&

"!%	
0
1'! → min

$̅
,                                                  (2) 

here 𝑧& is a reference point; 𝑓&23$ and 𝑓&2&4 are maximum and minimum objective values from the 

population.  

As the result, we consider a single-objective optimization problem which can be solved by any 

known LS method for single-objective optimization. 

3. Research Questions  

In this research the following questions were raised: 

§ Does the use of local search for solving DMOO problems gives an effect? 

§ Which scheme of hybridization of local and global search is the most effective?  

4. Purpose of the Study 

The purpose of this research is to investigate whether the using of LS with EA increases the 

performance of solving DMOOPs. 

5. Research Methods 

5.1. Hybridization of local and global search 

The hybridization of local and global search can be implemented in different ways. In this research 

three approaches to the hybridization have been considered: 

1. LS is performed after the global search algorithm run (solutions obtained by the LS procedure 

transfer again in the global search algorithm); 
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2. LS is performed before the global search algorithm run; 

3. Alternation of LS and the global search algorithm during the run (the interaction of LS and global 

search is repeated a predefined number of times). 

In these three approaches LS applied to the whole population. However, in the case of the alternation 

of LS and global search there is a possibility to use only a part of all individuals in LS. This approach allows 

to perform more steps of LS. In this research, LS uses 10 and 25 solutions from the population with the size 

equal to 100. Wherein, the number of objective function evaluations is equal in all approaches. 

Two different objective functions for applying LS are compared: the function presented in (2) and 

the negative hypervolume (HV). HV is the accuracy measure in multi-objective optimization that shows 

the distance between obtained PF and a reference point.  

When using LS there is a necessity to set bounds, in which variables of the LS objective function 

can change. In this research the bounds are computed as follows:  

𝒃𝒐𝒖𝒏𝒅𝒔 = {𝒙𝒊 ± 𝒅𝒊}, 𝒊 = 𝟏, 𝒏,((((((                                                        (3) 

here 𝒏 is the number of variables in the objective function; 𝒙𝒊 is the obtained solution; 

𝒅𝒊 = 	𝒏𝒅 ∙ 	Q𝒙𝒊𝒎𝒂𝒙 − 𝒙𝒊𝒎𝒊𝒏Q, 𝒏𝒅 ∈ [𝟎, 𝟏] is the rate of LS, which is set experimentally in this research. In the 

case of the low rate, solutions obtained by LS are located not uniformly along PF. An example of the 

distribution of solutions is shown in Figures 1 and 2.  

 

 Low rate of LS. Solutions are located not uniformly along PF 
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 Well-fit rate of LS. Solutions are located uniformly along PF 

5.2. Experimental settings 

In this study, the multi-objective optimization algorithm NSGA-2 has been used as a global search 

method to solve DMOOPs. NSGA-2 is one of well-known methods, its efficiency has been shown in many 

publications (Deb et al., 2002). DMOOP is considered as a sequence of multi-objective problems on a 

discrete time interval 𝒕 ∈ {𝟏, . . . , 𝑻}: 

W𝒇(𝒙Y, 𝜶Y(𝟏)) → 𝐦𝐢𝐧
𝒙;
, 𝒇(𝒙Y, 𝜶Y(𝟐)) → 𝐦𝐢𝐧

𝒙;
, … , 𝒇(𝒙Y, 𝜶Y(𝑻)) → 𝐦𝐢𝐧

𝒙;
_.                             (4) 

When a change in the environment occurs, a new population is formed from a half of solutions from 

the previous population and a half of randomly generated solutions (Rurich et al., 2022). 

We use the L-BFGS-B algorithm as LS; in our implementation of L-BFGS-B numerical gradient 

approximations are used. The IEEE CEC 2018 Dynamic Multi-objective Optimization Benchmark have 

been used as the test set (Jiang et al., 2018), it contains different types of DMOOPs with different levels of 

complexity.  

IGD (Inverted Generational Distance) and HV are used to evaluate the accuracy of obtained 

solutions. IGD shows differences between obtained PF and true PF. The DMOOP benchmark uses the 

averaged measures (denoted as MIGD and MHV):  

𝑀𝐼𝐺𝐷 = !
<
∑ 𝐼𝐺𝐷(𝑃=∗, 𝑃=)<
='! = !

<
∑ ∑ ?'

!

4('

4('
&'!

<
='! ,                                      (5) 

here 𝒏𝑷𝒕 = |𝑷𝒕|; 𝒅𝒊𝒕 is the Euclid distance between the 𝒊-th element of 𝑷𝒕 and the nearest element of 𝑷𝒕∗; 

𝑻 is the number of time intervals. 

𝑴𝑯𝑽 = 𝟏
𝑻
∑ 𝑯𝑽𝒕(𝑷𝒕∗)𝑻
𝒕%𝟏 ,                                                            (6) 

here HV is the hypervolume operator. In the publication (Jiang et al., 2018), there is the recommendation 

to calculate the reference point as (𝒛𝟏 + 𝟎. 𝟓, 𝒛𝟐 + 𝟎. 𝟓,… , 𝒛𝒎 + 𝟎. 𝟓), where 𝒛𝒋 is the maximum value of 

the 𝒋-th objective function in true PF in the 𝒕-th time moment, 𝒎 is the number of objective functions. 

6. Findings 

Table 1 and table 2 contain the experimental results with IGD and HV averaged over 20 independent 

runs. The highlighted values in the Table are the best IGD value for each problem among considered 

approaches. 

 

Table 1.  Values of IGD and HV metrics 

No 
prob. 

NSGA-2 with LS 
NSGA-2 

Alternation LS before NSGA-2 LS after NSGA-2 

IGD HV IGD HV IGD HV IGD HV 
1 0.15831 1.18294 0.19951 1.10575 0.22891 1.09941 0.24181 1.06783 
2 0.13664 8.84502 0.13135 8.83680 0.17930 8.72473 0.13273 8.83830 
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3 0.27566 3.93611 0.27652 3.93979 0.28041 3.89898 0.27810 3.93057 
4 0.21380 1.40995 0.19552 1.43523 0.29542 1.36834 0.32332 0.79912 
5 0.14873 3.14580 0.30786 2.94304 0.21872 3.05212 0.25991 2.99028 
6 0.03699 1.82889 0.02972 1.83040 0.05016 1.81919 0.05536 1.80944 
7 0.07263 1.56073 0.09210 1.51228 0.07406 1.55588 0.13462 1.43228 
8 0.13232 2.84618 0.14258 2.82195 0.15882 2.84012 0.16076 2.74400 
9 0.92868 0.99150 0.93187 0.98232 0.92869 0.98841 0.94605 0.96717 
10 0.13661 7.11163 0.13582 6.97979 0.15161 7.18540 0.15841 6.80160 
11 0.03914 0.94229 0.03838 0.93752 0.04327 0.94733 0.05949 0.89729 

 

Table 2.  Values of IGD and HV metrics in the case of the applying LS to a part of the population 

No 
prob. 

Alternation 
NSGA-2 

All individuals  10 individuals 25 individuals 

IGD HV IGD HV IGD HV IGD HV 

1 0.15831 1.18294 0.11825 1.24655 0.11510 1.24649 0.24181 1.06783 
2 0.13664 8.84502 0.12464 8.87218 0.12552 8.87211 0.13273 8.83830 
3 0.27566 3.93611 0.27518 3.94809 0.27503 3.94630 0.27810 3.93057 
4 0.21380 1.40995 0.07517 1.69591 0.12872 1.61027 0.32332 0.79912 
5 0.14873 3.14580 0.08656 3.25419 0.22150 3.09795 0.25991 2.99028 
6 0.03699 1.82889 0.03638 1.82775 0.02969 1.83326 0.05536 1.80944 
7 0.07263 1.56073 0.05084 1.61097 0.05740 1.59544 0.13462 1.43228 
8 0.13232 2.84618 0.15559 2.83323 0.15240 2.84090 0.16076 2.74400 
9 0.92868 0.99150 0.92207 0.98738 0.92260 0.99146 0.94605 0.96717 
10 0.13661 7.11163 0.13100 7.08420 0.13485 7.10742 0.15841 6.80160 
11 0.03914 0.94229 0.03880 0.94350 0.03882 0.94516 0.05949 0.89729 

 

In the Table 1 we can see that in the cases of using NSGA-2 with LS we achieve the results, which 

outperforms the results of applying stand-alone NSGA-2. The alternation of LS and NSGA-2 and LS before 

NSGA-2 show the best results. In Table 2, there are the results of using LS with all, with 10, and with 25 

individuals. We can see that in the cases when only a part of solutions is used in LS, we obtain the best 

results. 

7. Conclusion 

The results show that using of LS allows to improve the accuracy of solving dynamic multi-objective 

optimization problems. Implementation of LS applied to a part of the population shows the best results in 

comparison with the implementation of LS applied to all population. The received result means that the use 

of the hybridization of local and global search in solving of dynamic multi-objective optimization problems 

needs more detailed consideration.  

The ideas for further researches are follows. Consider other schemas and approaches of the 

hybridization of local and global search. Investigate the relationship between the number of individuals in 

LS that is needed to achieve the best result and the rate of changes. Investigate how rate of the local search 

can be fitted. 
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