
 
 

European Proceedings of 
Computers and Technology 

EpCT 
 

www.europeanproceedings.com e-ISSN: 2672-8834 
                                                                               

The Author(s) 2023. This article is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

DOI: 10.15405/epct.23021.19 
 

 
HMMOCS 2022  

International Workshop "Hybrid methods of modeling and optimization in complex systems" 
 

IDENTIFICATION OF DIFFERENTIAL EQUATIONS SYSTEMS 
WITH VARIOUS INPUT EFFECTS   

 
 

T. S. Karaseva (a)*  
*Corresponding author 

 
(a) Siberian Federal University, ul. Akademik Kirenskii, 26a, Krasnoyarsk, Russia, Reshetnev Siberian State 

University of Science and Technology, Krasnoyarskii rabochii prospekt, 31, Krasnoyarsk, Russia, 
tatyanakarasewa@yandex.ru 

 
 

Abstract 
 

Nowadays, differential equations and their systems are one of the most preferred ways to represent models 
of dynamic objects. Objects from different areas are dynamic. Therefore, a great number of methods for 
dynamical systems identification have been developed. However, as processes become more complex, there 
exist a need to develop new tools. A change in the input action according to a predetermined law could be 
one of features for dynamic processes. The paper studies the efficiency of the method based on evolutionary 
algorithms to identify objects in the form of systems of differential equations with various input effects. 
Genetic programming and differential evolution are the algorithmic basis of the method. The method 
performs self-configuring of parameters for evolutionary algorithms. The presented paper studies efficiency 
of the proposed method on five problems where the initial objects are represented by systems of differential 
equations of various orders. The conducted study takes into account the presence of noise in the initial 
samples. It demonstrates graphical interpretation of the obtained results. The obtained results prove 
efficiency of the developed method under various input influences.    
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1. Introduction 

Mathematical modeling of dynamic systems is an interdisciplinary tool for studying various 

processes in nature, society and industry. A lot of methods have been developed to simulate dynamic 

processes. These methods belong to the analytical and numerical, parametric and nonparametric classes 

(Brester et al., 2020; Ovcharenko, 2020; Roehrl et al., 2020). The study of various systems’ behavior often 

leads to analysis and solution of equations that include characteristics such as a rate of change of system 

parameters. An analytical representation of such changes are derivatives. They are the basis of differential 

equations. Differential equations and their systems are the basis for studying in the mathematical modeling 

field. They are functionally applied in manufacturing. It is extremely important for the development of 

various branches of science and technology (Brester & Ryzhikov, 2019; Liu et al., 2021).  

The theory of differential equations is characterized by its direct application for practical problems 

(Chu & Marynets, 2021). Differential equations and their systems can be applied as a tool for modeling 

various phenomena in mechanics, chemical reactions, electrical and magnetic phenomena (Escalante-

Martínez et al., 2020). The study of a wide range of problems connected with the strength of materials, 

biology, economics shows that their solution is reduced to mathematical modeling in the form of a 

functional dependence described by differential equations and their systems. The representation in the form 

of differential equations makes it possible to obtain a model that is suitable for further study. In this aspect, 

it is necessary to take into account the interpretability of the obtained results provided by the symbolic 

representation of differential equations. It is worth noting that they often contain not one, but several output 

characteristics when studying manufacturing processes. Systems of differential equations are applied to 

represent such processes.  

The paper analyzes a method based on a self-configuring genetic programming algorithm for 

identification of dynamic systems with input effects changing according to predetermined laws. 

2. Problem Statement 

Let it need to be solved the inverse problem of mathematical modelling for a process characterized 

by an arbitrary number of input and output variables, i.e., build a model in the form of a system of 

differential equations according to the measurements of inputs and outputs: 

⎩
⎪
⎨

⎪
⎧𝑦!

(#) = 𝑓!(𝑡, 𝑥!, … , 𝑥%, 𝑦!, … , 𝑦&)
𝑦'
(#) = 𝑓'(𝑡, 𝑥!, … , 𝑥%, 𝑦!, … , 𝑦&)

…
𝑦&
(#) = 𝑓&(𝑡, 𝑥!, … , 𝑥%, 𝑦!, … , 𝑦&)

 

where xmi are measurements of input variables, ysi are measurements of output variables, m and s are their 

numbers, respectively, k is an order of the differential equation. 

It should be taken into account that input effects can be changed according to the certain laws. 
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3. Research Questions 

The presented work explores the following research questions: 

§ What evolutionary methods make it possible to obtain a model of a dynamic object in the form 

of differential equations and their systems?  

§ Is it possible to apply the method based on evolutionary algorithms to identify dynamic objects 

with input effects changed according to certain laws? 

4. Purpose of the Study 

The purpose of this work is to develop and study a method based on evolutionary algorithms for the 

dynamic objects identification in the form of differential equations systems. The authors study the 

efficiency of the approach for various inputs. 

5. Research Methods 

The paper studies the method, proposed by the authors, for the identification of dynamic objects in 

the form of differential equations systems. The scheme of the method is presented in Figure 1: 
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 Algorithm of the evolutionary method for the identification of dynamical systems in the form 
of the differential equations system 

The considered method is characterized by the following features: 

1.  Differential equations are encoded in the form of trees. The algorithmic basis of the described 

method is a self-configuring genetic programming algorithm. It is characterized by the representation of 

the solution in the form of a tree. The authors modified the main evolutionary steps to encode differential 

equations in the form of a tree. Derivatives were included in the terminal set. The method of differential 

evolution is applied to optimize numerical constants included in the built differential equation. Thus, a key 

feature of the method is the automated selection of the structure of the differential equation and numerical 

coefficients. The method applies algorithms for adaptive configuring of the algorithm’s parameters 

(numerical parameters and parameters with the selection of the type) (Meyer-Nieberg & Beyer, 2007; Storn 

& Price, 1997). The study of the presented method is given in Karaseva and Semenkin’s (2022) study 

2.  The method was developed to represent the solution in the form of differential equations system. 

It was based on the parallel run of several genetic programming algorithms. Each algorithm searches for 

one of the equations of the system (Karaseva & Semenkin, 2022). Fitness is calculated for each individual 

in each population based on these values in each population; the best individual is determined: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

1 − 𝑒𝑟𝑟𝑜𝑟, 

𝑒𝑟𝑟𝑜𝑟 = 	
∑ ∑ 8𝑦() − 𝑦9():

'*
)+!

#
(+!

𝑠𝑛 , 

where n is sample size, s is number of equations, yij are values from the original sample, 𝑦9() is value of the 

model.  

The calculation of fitness (equation) for each individual in each population is carried out by 

substitution into each of the equations of the system. The best individuals are selected as remaining 

equations.  

Thus, the method helps to encode a system of differential equations of an arbitrary number of 

equations of an arbitrary order.  

6. Findings 

Table 1 presents systems of differential equations that were applied to study the considered method. 

 
Table 1.  Tasks for testing the method to identify systems of differential equations for various input 

effects 
No Differential equations systems Initial sample point 

1 !

𝑑𝑦!
𝑑𝑡 = 2𝑦! − 5𝑦" + 3

𝑑𝑦"
𝑑𝑡 = 5𝑦! − 6𝑦" − 1

 
y1(0)=6 
y2(0)=5 

 

2 !

𝑑𝑦!
𝑑𝑡 = 2𝑦! + 𝑦"
𝑑𝑦"
𝑑𝑡 = 3𝑦! + 𝑡𝑒#

 y1(1)=1 
y2(1)=2 
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3 

⎩
⎪
⎨

⎪
⎧

𝑑𝑦!
𝑑𝑡

= 2𝑦! − 𝑦" − 𝑦$
𝑑𝑦"
𝑑𝑡

= 3𝑦! − 2𝑦" − 3𝑦$ + 2𝑡

𝑑𝑦$
𝑑𝑡

= 2𝑦$ − 𝑦! − 𝑦" − 𝑡"

 

y1(0)=2 
y2(0)=3 
y3(0)=2 

 

4 

⎩
⎨

⎧ 𝑑"𝑦!
𝑑𝑡" = −𝑡𝑦"

𝑑"𝑦"
𝑑𝑡" = 𝑦" − 2

𝑑𝑦!
𝑑𝑡

 
y1(1)=4 
y2(1)=-4 

 

5 

⎩
⎨

⎧𝑑
"𝑦!
𝑑𝑡" =

𝑑𝑦!
𝑑𝑡 −

𝑑𝑦"
𝑑𝑡 + 𝑒

%# + cos 𝑡

𝑑"𝑦"
𝑑𝑡" =

𝑑𝑦!
𝑑𝑡 −

𝑑𝑦"
𝑑𝑡 − 2𝑒

# − sin 𝑡
 

y1(0)=2 
y2(0)=0 

 

 
The dependences presented in Figure 2 were selected as input effects. 
 

 

 Graph of the input effects 

Data with different levels of noise (5%, 10%) were generated based on each system of differential 

equations and input effects. The sample size for each set was 30 points. Thus, 9 data sets were given for 

each system. Also, 30 runs were carried out for each set. Table 2 presents error values for the given 

conditions averaged over 30 runs.  

Regression analysis are as follows (Table 2): 

Table 2.  Testing results of the method with various input effects 
Number of 
the system Input effects 

Error 
Noise 0% Noise 5% Noise 10% 

1 
𝑢(𝑡) = 𝑠𝑖𝑛(𝑡) 0.053 0.058 0.060 

𝑢(𝑡) = ln	(?𝑡" + 1 + 5) 0.066 0.072 0.077 
𝑢(𝑡) = 𝑒&'((#)+,-&(..0#) 0.099 0.104 0.107 

2 
𝑢(𝑡) = 𝑠𝑖𝑛(𝑡) 0.043 0.042 0.044 

𝑢(𝑡) = ln	(?𝑡" + 1 + 5) 0.001 0.001 0.001 
𝑢(𝑡) = 𝑒&'((#)+,-&(..0#) 0.001 0.001 0.002 

3 
𝑢(𝑡) = 𝑠𝑖𝑛(𝑡) 0.001 0.001 0.001 

𝑢(𝑡) = ln	(?𝑡" + 1 + 5) 0.012 0.013 0.012 
𝑢(𝑡) = 𝑒&'((#)+,-&(..0#) 0.001 0.002 0.002 

4 
𝑢(𝑡) = 𝑠𝑖𝑛(𝑡) 0.026 0.022 0.024 

𝑢(𝑡) = ln	(?𝑡" + 1 + 5) 0.002 0.002 0.003 
𝑢(𝑡) = 𝑒&'((#)+,-&(..0#) 0.025 0.027 0.031 

5 
𝑢(𝑡) = 𝑠𝑖𝑛(𝑡) 0.001 0.001 0.001 

𝑢(𝑡) = ln	(?𝑡" + 1 + 5) 0.001 0.001 0.002 
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𝑢(𝑡) = 𝑒&'((#)+,-&(..0#) 0.001 0.001 0.001 
Figures 3-7 present the correspondence graphs of the obtained models to the original samples. Green 

and blue lines indicate outputs of the original objects, red and yellow lines correspond to the outputs of the 

obtained models (if there are more than two outputs, violet lines are outputs of the original objects and light 

blue lines are outputs of the obtained models). Complete line overlap with minimal model error is possible. 

 

 Reaction of object 1 to the described input effects 

 

 Reaction of object 2 to the described input effects 

 

 Reaction of object 3 to the described input effects 

 

 Reaction of object 4 to the described input effects 
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 Reaction of object 5 to the described input effects 

7. Conclusion 

In the course of the work, the study of the quality of identification in the form of differential 

equations systems for different input influences was conducted. Objects are represented by differential 

equations systems of various types and orders. The resulting models describe the data well regardless of 

the type of input effects. It is confirmed graphical interpretation of the obtained values. 
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